X3716/92-0108 WG21/N0185

ANSI Doc Number: X3J16/92-0108
%M wiog s T ISO Doc Number: ~ WG21/N0185
Date: October 3,1992
4 Project: Programming Language C++
/W A /,, ‘,%“""‘4 : Reply To: Philip Price

Computer Sciences Corp.
301 North R Street
Lompoc, CA 93436

Telephone: (805) 736-1275

FAX: (80S) 735-3237

EMAIL: uunet!csclompce!phil
phil@nid.csc.com
phil@csc.com

Intertranslation Unit Static Initialization
Philip Price

1. Abstract

Companies using the C++ language have had to use various means to direct the compilers to
initialize static objects in a specific order. These techniques are necessary when a static object
is used, however indirectly, by a constructor of a static object that is in a different translation
unit. It is preferred that a standard means be defined to replace the more limiting non-standard
techniques currently used. The depend_on keyword is proposed as a solution to this problem.

2. Introduction

The current working paper (X3J16/92-0091 WG21/N0168) describes the intertranslation unit
static initialization sequence in paragraph 3.4.5. There are two ways to interpret the second
sentence in the paragraph. The first interpretation is that the or’ in the sentence means either
condition must be met. The other interpretation is that the ’or deferred’ in the second sentence
means ’and no later than’. The rest of the paper will assume the first interpretation in describing
the current problem. If the second interpretation is instead assumed it would only reduce, not
eliminate, the number of problems that would need to be resolved. The current problem can be
demonstrated with a code fragment.

November 19, 1992 Page 1



X3716/92-0108 WG21/N0185

// Name Y.H - Interface file for the Y class.
class Y{
public:
static int lastId; // Next numerically ascending Id that is
// available.
const int myId; // A unique id?
Y(void);

’ .

// Name Y.C - Definition file of Y class and data members.

#include "Y.H"

static const int a=1; // Added so that Y::lastid uses a
// non -const initializer.

int Y::lastId=a-1;

Y::Y(void
):myId(lastId++){
}

7/

// Name: F.C - An arbitrary translation unit.
#include "Y.H"
static Y a;

// Name G.C - An arbitrary translation unit.
#include "Y.H"
static Y b;

/]

What is the value of a.myId in F.C? or for that matter Y::lastld? Expand this to multiple
translation units (F.C and G.C) all with a static Y instance defined and the problem becomes
more apparent. Possible values for b.myld are 0 ,1 or garbage. Also note that a.mylId will
sometimes have the same value as b.myld depending on the order of initialization of the
translation units.

3. Proposal

The proposal is to add a declaration specifier and modify the working paper to reflect the
addition of the keyword. The proposed keyword has been independently defined by several
individuals and through discussions at past ANSI X3J16 meetings (ANSI X3J16/91-0137
WG21/N0070, ANSI X3J16/92-0083 WG21/N0160). The keyword as presented is a synthesis
of those ideas.

decl-specifier:
depend_on

The use of the keyword in a translation unit declares that the current translation unit shall
perform initialization of static objects after the translation unit that contains the definition of the
identifier. The identifier should have external linkage. Add the following to paragraph 3.4.5
in the current working paper:

November 19, 1992 Page 2



X3716/92-0108 WG21/N0185

A translation unit containing a declaration with the specifier depend_on will
initialize afier the translation unit that defines the declarator. Translation units
that are not depended upon will initialize after translation units that are depended
upon. ‘

The depend_on keyword only specifies the order of initialization in relation to the current
translation unit.

A few examples will help demonstrate how the keyword solves the intertranslation unit static
initialization problem. Each example contains file fragments. Short names are used to help
reduce extraneous and irrelevant information.

Example 1: Programmers Usage. A programmer wishes to use a class called Y which
requires a particular translation unit to be initialized before any static instance of Y is created
so that a unique ID is given to each instance of class Y. This is Problem 1 with the Depend_on
keyword added.

// Name Y.H - Interface file for the Y class.

class Y{

public:

static int lastId; // Next numerically ascending Id that is
// available.

const int myId; // A unigue id?

depend_on Y(void);

}:

// Name Y.C - Definition file of Y class and data members.
#include "Y.H"

static const int a=1; // Added so that Y::lastid uses a

// non -const initializer.
int Y::lastId=a-1;

Y::¥(void
):myId(lastId++){

}
1/ s

// Name: F.C - An arbitrary translation unit.
#include "Y.H"
static Y a;

// Name G.C - An arbitrary translation unit.
#include "Y.H"
static Y b;

//ee-

By including Y.H, a translation unit will initialize it's own static objects after the translation unit
defining Y(void) constructor. The author of the Y class will have written the Y.H file and
would only have added the depend_on decl specifier to the Y::Y(void) declaration if the

November 19, 1992 Page 3



X3116/92-0108 WG21/N0185

translation unit defining the Y(void) constructor has static objects who must be initialize before
constructing a static instance of Y. The author of the Y class could have used any externally
linked identifier whose definition is in the translation unit to be initialized first. In this example

an author could have used a depend_on Y::lastld instead of depend_on Y::Y(void), but either
statement works.

The depend_on statement is effectively ignored when it refers to the translation unit which is
being initialized. Notice the Y.C file has a static object of file scope (Y::lastId) that is used in
the Y(void) constructor. This requires that the translation unit as defined by the Y.C file must
be initialized before an instance of the Y class can be constructed.

The Y class is used statically in different translation units without additional coding. The
translation unit encompassing F and G initialize after the translation unit containing the definition
of the Y::Y(void) symbol. The order of initialization is the translation unit containing Y then
F and G. The code fragments above do not specify whether F or G initializes first. In answer
to the question posed in problem 1 the value of b.myld can now be 0 or 1. Also note that
a.myld will not equal b.myId.

If there is a conflict such as two translation units who both say they are after the other, then
undefined behavior will occur and a diagnostic message shall be generated.

Example 2: Absence of Depend_on keyword. The following is an example where the
depend_on keyword is neither used nor needed. Adding the depend_on keyword to the language
will not change existing code behavior. If a program relies on a particular compiler’s default
order of translation unit initialization (which has not been defined in the standard) and does not
use the depend_on keyword, then the behavior of that program will remain unchanged and

unportable. The following example does not need the depend_on keyword and would be
portable.

November 19, 1992 Page 4



X37116/92-0108 WG21/N0185

// Name: X.H - Class H declaration.
#include *Y.H"
class X{
public:
/e
private:
Y a;
)i

// Name: Y.H - Class Y declaration.
class Y{
public:
Y(void);
private:
int a;

}z

// Name: X.C - Class X definition
#include "X.H"

// oo

// Name: Y.C - Class Y definition
#include "Y.H"

Y7

The absence of the definition of static objects in the translation units defining both classes causes
the depend_on keyword not to be required.

Example 3: Use between an application programmer and a Library author. This example
is similar to Example 2. The library author will have written the interface file Support.H, while
the application author will just include it. The application author did not need to do anything
to support the library author needs.

// Name: Support.H - Library header.
#include <Dictionary.H>
class Support{

depend_on static Dictionary rootNode;

}:

//Name: X.C - Application Programmer’s own Class definitions
#include "X.H"

#include <Support.H>

static Support a;

X::X(void)(
a.DoSomeMethod();
}

November 19, 1992 Page 5



X3716/92-0108 WG21/N0185

Example 4: Use with a Dynamically Linked Library. Essentially when a depend_on keyword
refers to a translation unit which resides in a Dynamically Linked Library it is the equivalent
of requesting the dynamically linked library to be loaded (if not already loaded), and the
translation unit referred to within the library to initialize before the translation unit (with the
depend_on decl-specifier) is initialized.

// Name: Support.H - Library header.
#include <Dictionary.H>
class Support{

depend_on static Dictionary rootNode;

}i

//Name: X.C - Application Programmer’s own Class definitions
#include "X.H"

#include <Support.H>

static Support a;

X::X(void){
a.DoSomeMethod () ;
}

5. Alternatives

The depend_on as proposed in the paper has a set of problems it does not resolve, and it
requires people to rewrite their interface files(.H’s) to include all of the .Hs used in their
implementation(.C’s) if they wish to eliminate the chances of incorrect static initialization.
Further discussion of this problem set and the alternatives will be discussed on the environment
group reflector. Also depend_on is the current keyword name (it won the most votes in Boston
and replaces the name ’after’), if anyone desires a different keyword name please post it on the
reflector and before the deadline for the pre-Portland mailing I will poll.the committee on the
keyword name choices. I have analyzed a number of other alternatives (before and after the
Boston meeting) which are not mentioned below, but they have problems with either strong or
weak dependencies, ambiguous resolution when dealing with virtual methods or required radical
changes to the environment.

The first alternative is to do nothing. If selected then a plethora of solutions will exist as each
institution strives to mitigate the problem in intertranslation unit static initialization. Doing
nothing is not a viable solution.

Alternately flow analysis could be added to the language specification. In this case the
specification would have to describe an algorithm to be adhered to. A particular behavior as
describe in an algorithm is necessary if portability is to be achieved. No algorithm will solve
all cases since the set of all cases would be the set of all directed graphs. Algorithms can only
solve a subset of these cases. One example of the difficulties in this alternative is with shared
memory systems. In a shared memory environment the route through code a particular
instantiation of a static object takes could be affected by a shared object whose value is
indeterminable until actual execution of a particular statement.

November 19, 1992 Page 6



X3J16/92-0108 WG21/N0185

A ~depend_on keyword could be created (see ANSI X3J16/91-0137 WG21/N0070) which
cancels a previous depend_on keyword. This would reduce the number of hard dependencies
unnecessarily generated. I will describe this problem set in more detail on the reflector since I
believe that this addition will be necessary.

The granularity could be increased and the depend_on keyword meaning modified. The keyword
would be defined to apply only to data objects and would cause extra code to be generated (read
as a runtime hit) to check if the depend_on object has already been initialized. If it had not
already been initialized it’s initialization code would be run. This option resolves the largest set
of initialization problems, but will cause a slight performance decrease whenever a data object

which explicitly has a depend_on decl-specifier is used or referenced. It would still have
ambiguity problems.

6. Summary

As demonstrated by the above examples the depend_on keyword will resolve the primary
intertranslation unit static initialization problem. It will not break existing code, nor will it put

significant burdens on the application author. Only authors who need to control the order of
initialization will be affected, and it will be a positive effect.

Cloe T

/AR
cnadde T 7,

J .
(o A L M(%>L

- L. 4

),

November 19, 1992 Page 7



